
October 1997 The Delphi Magazine 59

Edited by Mike Orriss. Please send your
Tips direct to Mike at mjo@compuserve.com

IDAPI32.CFG
Have you ever found that all your aliases have sud-
denly disappeared? It happened to me when trying out
a shareware component that had a very badly behaved
install that created a new version of IDAPI32.CFG
instead of merging into the current file. The aliases are
not lost but the Registry no longer points to them.

The easiest way of making the correct CFG current
that I have found so far with Delphi 3 is to run BDEAd-
min.EXE and use File|Open to open your CFG file. When
you close BDEAdmin, you will be asked if you want this
to be your current config and it will update the Registry
for you.

Contributed by Mike Orriss, mjo@compuserve.com

Changing The Month
There are occasions where you wish to allow the user
to specify a new date by adding or subtracting a given
number of months. This is a fairly simple operation, but
it does have its pitfalls: try subtracting one month from
the 30th March for example.

There is a simple trick to obtain the number of days
in a given month. The integer part of a TDateTime vari-
able represents a number of days so we can just take
the date of the first of the following month and subtract
one. Supposing that you know the month and year,
then the date of the last day of the month is given by:

Date1 := EncodeDate(yyyy,mm + 1,1) - 1;

The number of days in the month can then be extracted
via the DecodeDate procedure:

DecodeDate(Date1,yyyy,mm,dd);

where yyyy,mm,dd are Word variables that you supply.
Listing 1 contains a generic function for adding/sub-

tracting month(s) which avoids the problem above.

Contributed by Mike Orriss, mjo@compuserve.com

Plugging In A Class
ClassPlug provides a way to implement VCL changes
without modifying (or even having) the VCL source
code, but it should be used with great care! It will even
allow you to modify the affect of compiled units and
even works at design time. Imagine the class:

TPanel = class(TWinControl);

Suppose you want to change the message handling of
WM_PAINT and that that change is to be used on every
Panel available? Normally you derive a new class:

TMyPanel = class(TPanel)

and replace all the used panels with TMyPanel. But what
happens if somebody derives a new component from
TPanel? Your change to TMyPanel won’t stick to that
control and you have to add your code to it. This is
(read was) a major problem, but I have a solution: you
can use ReplaceParentClass to stick a class in between
TWinControl and TPanel to hook in the WM_PAINT
procedure.

How? Derive a new control from TWinControl which
is used to hook WM_PAINT and then temporarily replace
the ParentClass in TPanel with THookControl (using Ini-
tialization and Finalization). See Listings 2 and 3.

Oh, in case you were wondering, to make the change
occur at design time you can register a component with
the initialization and finalization part in the unit, to
make the change when the package is loaded. There is
an example project on the disk (CLASSPLUG.ZIP)
which demonstrates how display a caption on a panel
as it is re-sized.

Contributed by Jonas W Nordlöf,
jonas.nordlof@autodiagnos.se

unit Test;
interface
uses
Windows, SysUtils, Classes, Messages,Menus, Graphics,
Controls, Forms, Consts, Dialogs, ClassPlug;

THookControl = class(TWinControl);
protected
Procedure WMPaint(Var Message: TWMPAINT);
message WM_PAINT;

end;
Implementation
Procedure THookControl.WMPaint(Var Message: TWMPAINT);
begin
// Do your thing....
inherited; // Important!! Ok?

end;
Initialization // Make the change
ReplaceClassParent(TPanel, TWinControl, THookControl);

Finalization // Restore to be clean...
ReplaceClassParent(TPanel, THookControl, TWinControl);

end.

➤ Listing 2

function(date: TDateTime, months): TDateTime;
var
yyyy,mm,dd,ddmax: word;
date2: TDateTime;

begin
DecodeDate(date,yyyy,mm,dd);
mm := mm + months; // months can be negative
while mm > 12 do begin dec(mm,12); inc(yyyy); end;
while mm < 1 do begin inc(mm,12); dec(yyyy); end;
ddmax := DecodeDate(EncodeDate(yyyy, mm+1, 1)-1,
yyyy, mm, ddmax);

if ddmax < dd then dd := ddmax;
Result := EncodeDate(yyyy,mm,dd);

end;

➤ Listing 1

60 The Delphi Magazine Issue 26

Notebook Menu Merging
Contrary to Delphi’s help system, TMainMenu compo-
nents do not have to be on separate forms to work. I
wanted to merge different menus when a different note-
book page is selected. I put a menu for each page onto
my form and in the TTabSet.OnChange event I call Main-
Menu1.Merge(Page1Menu) etc.

This works well if you don’t use any other modeless
forms. If you have to use modeless forms you need to
keep a pointer to the current menu and remerge the
menu when the form closes.

The end result is really nice. I like it so much I would
like to see this technique adopted as a standard inter-
face. Try the demo (on the disk as NOTEMENU.ZIP) and
let me know what you think.

Contributed by Paul Warren,
hg_soft@uniserve.com

Version Information
As you know, Delphi 3 allows us to include version
information in our project. When you select Project|
Options|Version info, it gives you the chance to specify
items such as major/minor version numbers, release
and build numbers, as well as module attributes and a
series of Key/Value pairs describing specific informa-
tion related to the application you are building. You
can even instruct Delphi to auto-increment the Build
Number, a useful feature that allows you to keep track
of how many times your app has been compiled.

All this information is stored inside the EXE file in the
form of a special resource (of type RT_VERSION, as

defined by Microsoft). The question is, how can we
access the internals of this resource and obtain this
information, let’s say, in order to show it in an About
box? The answer lies in using the Win32 API function
VerQueryValue, that returns the contents of the speci-
fied section of the VersionInfo resource.

As a complete description of the structure of the Ver-
sionInfo resources and the VerQueryValue function
could take several pages but it is well covered in the
Win32 API Help. I will show the way to obtain just the
version/release/build information, which are the most
useful items (in my opinion) since the product name
can always be taken from somewhere and the name of
my company is already “wired” into the About Box
repository template I use in all my projects.

In order to call VerQueryValue, you must specify the
address of your VersionInfo resource (there will be
typically only one in a project, named #1), the key that
identifies the element you need, the address of the
place where you want a pointer to the information to be
stored, and the address of an integer variable, where
Windows will put the real length of the item for which
you asked.

In order to access version/release/build numbers,
you must supply \ (for the root block) as the key to be
found. In this case, Windows returns us a pointer to a
(fixed length) structure of the Delphi type TVSVersion-
FileInfo (defined, of course, in Windows.PAS). Listing
4 shows how to prepare the call to VerQueryValue and
after that unpack the desired values.

In the example project included (VINFO.ZIP on the
disk), this code is attached to the constructor of an
About Box form.

Contributed by Octavio “Dave” Hernandez,
cppbdany@danysoft.com

Starting Projects Via DPR
This tip makes life a lot easier when you have to work
with Delphi 1 on a system that has Delphi 2 and/or 3
installed. Since I installed Delphi 2 and Delphi 3,
double-clicking the .DPR file for any project brings up
the last version of Delphi that I installed. However, I
have some projects that I still need to work on in Delphi

unit ClassPlug;
interface
procedure ReplaceParentClass(DClass, OldParent,
NewParent: TClass);

implementation
uses Windows;
type
PP = ^Pointer; // Pointer of Pointer of Parent...

procedure ReplaceParentClass(DClass, OldParent,
NewParent: TClass);

var
a: ^Byte;
p1,p2: PP;
prot: Longint;

begin
// Simple dummy check..
if (NewParent = nil) or (DClass = nil) then Exit;
// Find the class Parent pointer of AClass
while (DClass.ClassParent <> OldParent) do begin
if DClass.ClassParent = nil then Exit;
if DClass.ClassParent = NewParent then Exit;
DClass := DClass.ClassParent;

end;
a := Pointer(DClass);
inc(a,vmtParent);
p1 := Pointer(a);
{ Find the class Self pointer of NewParent, wich will be
used to fill the place of the ParentClass Pointer }

a := Pointer(NewParent);
inc(a,vmtSelfPtr);
p2 := Pointer(a);
{ Big THANX to Cyril Jandia for the next 3 steps, taken
from the Issue 24 class traps example.I had it all
worked out, except for the VirtualProtect thingy }

VirtualProtect(p1, SizeOf(Pointer), PAGE_READWRITE,
@prot); // let’s be brave

p1^ := p2; // let’s be yet more brave
// time to be clean: not necessary but easy, then...
VirtualProtect(P1, SizeOf(Pointer), prot, @prot);
// use the next line to visualize the change...
// TClass(PP(P1)^^).className

end;
end.

➤ Listing 3

var
h: HRSRC;
ptrBlock, verinfo: Pointer;
verInfoSize: integer;

begin
// ... h := FindResource(HInstance, ‘#1’, RT_VERSION);
if h <> 0 then begin
ptrBlock := LockResource(LoadResource(HInstance, h));
VerQueryValue(ptrBlock, ‘\’, verInfo, verInfoSize);
with PVSFixedFileInfo(verInfo)^ do
Version.Caption := ‘ Version ‘ +
IntToStr(dwProductVersionMS div 65536) + ‘.’ +
// major version
IntToStr(dwProductVersionMS mod 65536) + ‘.’ +
// minor version
IntToStr(dwProductVersionLS div 65536) + ‘.’ +
// release
IntToStr(dwProductVersionLS mod 65536);
// build number

end;
// ...

end;

➤ Listing 4

62 The Delphi Magazine Issue 26

1. So I created a shortcut and put it in the same direc-
tory as the project. The target line of the shortcut
invokes Delphi 1 passing the name of the .DPR file. The
start in directory is set to the directory containing the
project. This makes it a lot easier than starting Delphi 1
from the start menu and then navigating to the project.

Contributed by Mark Erbaugh,
71370.1475@compuserve.com

Code Completion
Inside a form’s method, type self. and the components,
properties and methods of the form itself will be listed
in the code completion combobox.

Contributed by Stephane Grobety, grobety@capp.ch

Navigation With Cursor Keys
A few days ago, one of our clients asked us to imple-
ment navigation through the edit controls on a form
using the cursor keys instead of the usual WindowsTab
and Shift-Tab keystrokes.

A common request from our clients who are used to
old DOS user interfaces was always that pressing the
Enter key should move focus to the next control in the
tab order, and we got used to implementing the feature
by means of a well-known trick: setting the form’s Key-
Preview property to True (so that keystrokes go first to
the form and only after that to the active control), and
then programming the form’s OnKeyPress event so that
the call:

Perform(WM_NEXTCTLDLG, 0, 0);

is made when the Enter key is received. But this time we
needed more: not only to navigate the form’s controls
forwards, but also backwards (and interestingly
there’s no WM_PREVCTLDLG message in Windows!).

The solution we found is based on the use of a Win32
API function, Keybd_Event, which is capable of generat-
ing keystrokes, ie synthesising a WM_KEYUPor WM_KEYDOWN
message given a virtual key code. As before, we set
form’s KeyPreview to true, but instead of supplying a
handler for OnKeyPress, we use the lower level OnKey-
Down event (Listing 5).

Whenever our event handler receives a VK_UP virtual
key code, stating that the ArrowUp key has been
pressed, we activate a series of three calls to
Keybd_Event that simulate the pushing of the Shift-Tab
combination. For the Shift key,we must make two calls
that correspond to pressing and releasing (the reader
is invited to check for him/herself that the second call
is just indispensable!).

Be aware that this solution works as shown only for
forms that do not include controls for which up and
down arrow keys have a concrete meaning, as is the
case for list boxes, combo boxes, or multi-line edit con-
trols. In such cases, additional programming will be
needed in order to ensure the arrow keys work as
expected when such a control has the focus.

In any case, Keybd_Event seems to be a very handy
function that can be applied to many different situa-
tions. The Win32 API Help shows how an application
can use it to produce a full-screen or window snapshot
and save it to the clipboard, which could be useful, for
instance, for debugging purposes.

Contributed by Octavio “Dave” Hernandez,
cppbdany@danysoft.com

Update: More Delimiter Tools, Issue 24
In case anyone got confused by the last two paragraphs
on page 63, issue 24, the word “Next” in the penultimate
paragraph referred to the next function to be dis-
cussed, Get_nth_word, not to some procedure or
function named Next. I probably should have made that
clearer originally, but things do get past us once in a
while. In the last paragraph I probably should also
have made an explicit mention of Get_nthWord, instead
of just the place where I got the inspiration from, the
REXX function Word().

Brandon Smith, http://members.aol.com/synature

Update: Just The Extension Please
In Issues 21 and 24 Tom Corcoran and Pete Frizell deal
with the problems of extracting a filename without the
extension and changing the extension. Try these:

shortFileName := ExtractFileName(
ChangeFileExt(longFileName, ‘’));

newFileName := ChangeFileExt(fileName,
newExtension);

ChangeFileExt has existed since Delphi 1, so I believe
Tom and Pete missed a trick here!

Contributed by Thale Hadderingh, thale@pi.net

procedure TForm1.FormKeyDown(Sender: TObject;
var Key: Word; Shift: TShiftState);

begin
case Key of
VK_DOWN,VK_RETURN :
// Enter OR Arrow Down - same as Tab
begin
Keybd_Event(VK_TAB,0,0,0);

end;
VK_UP:
// on receiving ArrowUp, simulate Shift-Tab
begin
// simulate Shift key pressed
Keybd_Event(VK_SHIFT,0,0,0);
Keybd_Event(VK_TAB,0,0,0);
// Shift key released
Keybd_Event(VK_SHIFT,0,KEYEVENTF_KEYUP,0);

end;
end;

end;

➤ Listing 5

	IDAPI32.CFG
	Changing The Month
	Plugging In A Class
	Notebook Menu Merging
	Version Information
	Starting Projects Via DPR
	Code Completion
	Navigation With Cursor Keys
	Update: More Delimiter Tools, Issue 24
	Update: Just The Extension Please

